Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12397, 2023.
Article in English | Scopus | ID: covidwho-20232906

ABSTRACT

A portable, inexpensive, and easy-to-manufacture microfluidic device is developed for the detection of SARS-CoV-2 dsDNA fragments. In this device, four reaction chambers separated by carbon fiber rods are pre-loaded with isothermal amplification and CRISPR-Cas12a reagents. The reaction is carried out by simply pulling the rods, without the need for manual pipetting. To facilitate power-free pathogen detection, the entire detection is designed to be heated with a disposable hand warmer. After the CRISPR reaction, the fluorescence signal generated by positive samples is identified by naked eye, using an inexpensive flashlight. This simple and sensitive device will serve as a new model for the next-generation viral diagnostics in either hospital or resource-limited settings. © 2023 SPIE.

2.
Fibers and Polymers ; 2023.
Article in English | Scopus | ID: covidwho-2306465

ABSTRACT

The global outbreak of COVID-19 results in the surge of disposable sanitary supplies, especially personal protective face masks. However, the charge dissipation of the electret meltblown nonwovens, which predominate in the commercial face mask filters, confines the durability and safety of commercial face masks. Furthermore, most of the face masks are made from nondegradable materials (such as PP) or part of their degradation products are toxic and contaminative to the environment. Herein, a type of face mask with biodegradable and highly effective PLA bi-layer complex fibrous membrane as filter core is reported. The prepared PLA complex membrane possesses a high-filtration efficiency of 99.1% for PM0.3 while providing a favorable pressure drop of 93.2 Pa. With the PLA complex membrane as the filter core, our face mask exhibits comparable or even higher wearability to commercial face masks, which further manifests our designed PLA complex membrane a promising filter media for face masks. © 2023, The Author(s), under exclusive licence to the Korean Fiber Society.

3.
Carbon ; 209, 2023.
Article in English | Scopus | ID: covidwho-2306451

ABSTRACT

The global pandemic of COVID-19 poses significant challenge to the recycling of disposable polypropylene (PP)-based waste masks. Herein, a simple but effective sulfonation route has been proposed to transform PP-based waste masks into value-added hard carbon (CM) anode materials for advanced sodium-ion batteries. The sulfonation treatment improves the thermal stability of the PP molecule, preventing their complete decomposition and the release of massive gas molecules during the carbonization process. Meanwhile, the oxygen functional groups introduced during sulfonation effectively facilitates the cross-linking between the PP chains, hindering the rearrangement of carbon microcrystalline structures and enhancing its structural disorder. As a result, the prepared hard carbon anode (CM-180) with a high disorder degree and minimal surface defects realizes a high sodium storage capacity of 327.4 mAh g−1 with excellent cycle and rate capability. In addition, when coupled with O3–NaNi1/3Fe1/3Mn1/3O2 cathode, the fabricated sodium-ion full cell delivers a high energy density of 238 Wh kg−1 and achieves an outstanding rate capability with a retained capacity of 75 mAh g−1 even at an ultrahigh current rate of 50 C. This work offers a novel insight into transforming the waste masks to value-added hard carbons with promising prospects for sodium-ion batteries. © 2023

4.
Journal of the Energy Institute ; 108, 2023.
Article in English | Scopus | ID: covidwho-2296574

ABSTRACT

Millions of face mask has been converted to waste since the onset of COVID-19 virus. Hence, present study explores the feasibility of converting disposable face masks to energy through catalytic pyrolysis process using a low-cost waste (spent aluminum hydroxide/oxide nanoparticle adsorbent) derived catalyst. Thermogravimetric analysis of the non-catalytic and catalytic pyrolysis of disposable face mask was conducted at varied heating rates of 10 °C/min, 20 °C/min, 30 °C/min, 40 °C/min, and 50 °C/min, respectively. Iso-conversional methods, Kissinger Akahira Sunose (KAS) and Ozawa Flynn Wall (OFW) were used for the kinetic study. The reaction mechanism was analyzed using Criado's z-master plot (CZMP) method along with the determination of thermodynamic parameters of the process. Results found that the addition of a catalyst to the process benefits the overall efficacy of the process by reducing the activation energy (Ea) (without catalyst;OFW-Ea: 188.7 kJ/mol, KAS-Ea: 186.2 kJ/mol) as well as lowering the disordered state of the process. Metal doped catalyst (Ni/ γ-Al2O3) (OFW-Ea: 168.4 kJ/mol, KAS-Ea: 167.8 kJ/mol) shows a larger reduction in activation energy in comparison to bare alumina (γ-Al2O3) (OFW-Ea: 183.2 kJ/mol, KAS-Ea: 180.4 kJ/mol). The current study presented disposable face masks as reclaimable in terms of energy and waste-derived catalyst as a potent solution to be explored in place of high-cost commercial catalysts. © 2023 Energy Institute

5.
Lecture Notes in Electrical Engineering ; 989:1-10, 2023.
Article in English | Scopus | ID: covidwho-2275315

ABSTRACT

In the twenty-first century, biosensors have gathered much wider attention than ever before, irrespective of the technology that promises to bring them forward. With the recent COVID-19 outbreak, the concern and efforts to restore global health and well-being are rising at an unprecedented rate. A requirement to develop precise, fast, point-of-care, reliable, easily disposable/reproducible and low-cost diagnostic tools has ascended. Biosensors form a primary element of hand-held medical kits, tools, products, and/or instruments. They have a very wide range of applications such as nearby environmental checks, detecting the onset of a disease, food quality, drug discovery, medicine dose control, and many more. This chapter explains how Nano/Micro-Electro-Mechanical Systems (N/MEMS) can be enabling technology toward a sustainable, scalable, ultra-miniaturized, easy-to-use, energy-efficient, and integrated bio/chemical sensing system. This study provides a deeper insight into the fundamentals, recent advances, and potential end applications of N/MEMS sensors and integrated systems to detect and measure the concentration of biological and/or chemical analytes. Transduction principle/s, materials, efficient designs, including readout technique, and sensor performance are explained. This is followed by a discussion on how N/MEMS biosensors continue to evolve. The challenges and possible opportunities are also discussed. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

6.
Journal of Natural Fibers ; 20(1), 2023.
Article in English | Scopus | ID: covidwho-2268303

ABSTRACT

The demand for face masks is increasing exponentially due to the coronavirus pandemic and the particulate matter (PM) in the atmosphere. As a result, an enormous number of disposable mask filters have been produced and discarded, contributing to plastic waste. Underprivileged people who cannot afford to purchase commercial face masks have started making fabric masks with waste clothing;however, this material does not effectively filter viruses or PM. Therefore, in this study, a chitosan coating was applied to clothing fabrics to increase their effectiveness as face masks. The improvement in the PM removal efficiency owing to the chitosan polymer was observed for stocking, innerwear, and bamboo materials, but not for cotton. Furthermore, chitosan prepared in the form of a nanowhisker (CsW) achieved a PM 2.5 removal efficiency of 96% in a five-layer cotton fabric. In addition, a commercial biodegradable poly(lactic acid) filter was coated with CsW, which increased the PM 2.5 removal efficiency from 67% to 83%. Additionally, microbial growth was significantly suppressed in the chitosan-coated fabrics, and the degree to which it was suppressed depended on the coating concentration. The study will aid in the utilization of face mask filters that are more sustainable, efficient, and widely accessible. © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

7.
20th European Conference on Composite Materials: Composites Meet Sustainability, ECCM 2022 ; 6:63-68, 2022.
Article in English | Scopus | ID: covidwho-2257727

ABSTRACT

The general focus of research is the development of recycling protocols for disposable surgical masks into new raw materials for different possible applications. Separation of various constituent materials was performed by manual procedure or by water floating. The potentially targeted end applications are thin film and glass fibre composites. Polypropylene thin-films with a thickness of 100 micron were produced by compounding the face mask polymer with different content of a virgin PP, in the range 20-80 wt%. Face mask polypropylene (FM-PP) composites containing glass fibre of 15 wt% and 30 wt% were also prepared, evidencing an improvement of stiffness and strength, furtherly increased in presence of coupling agent. © 2022 Fambri et al.

8.
4th International Conference on Advancements in Computing, ICAC 2022 ; : 299-303, 2022.
Article in English | Scopus | ID: covidwho-2251090

ABSTRACT

COVID-19 is one of the pandemic diseases that has hit the world including Sri Lanka. He has a virus that became the target of bids to stop its spread. Including the implementation of health protocols, to provide information about the spread of the virus emergency response, detection services for suspicious persons infected with the virus, and programs to contain the spread of the virus ensuring that the whole of Sri Lanka gets vaccinated. Here, the research focuses on the minimal spread of the face mask in the office e nvironment a n i dentification system that uses a deep learning model that prioritizes object recognition for the identification o f e mployees w ho w ear a f ace m ask and detects social distancing and crowd gathering, if any if there is a violation, it will inform via a voice notification. L oss o f Smell after the next component. One person can use one disposable card to check the smell of sniffing. E ach d isposable c ard has QR codes, and all QR codes are encrypted by adding data. The user scans the QR code on their ticket and then scratches off and smelled the smelling area and selected the corresponding scent on the disposable card. Employee company attendance is a proposed automated attendance system using facial recognition. Because it requires minimal human influence a nd o ffers a high level of accuracy and marking employee attendance and employee body temperature measurement, facial recognition will appear to be a practical option. This system aims to provide a high level of protection. Automated Attendance systems that detect and recognize are safe, fast, and time-consuming savings. This technique can also be used to identify an unknown person. © 2022 IEEE.

9.
Progress in Rubber, Plastics and Recycling Technology ; 2023.
Article in English | Scopus | ID: covidwho-2250546

ABSTRACT

The demand for gloves (e.g., disposable gloves, medical gloves) is increasing due to the Coronavirus disease 2019 (COVID-19) pandemic. Stability in the supply chain in the glove industry is important, and thus strategies are used to solve the problem of the shortage of nitrile gloves. The blending of nitrile butadiene rubber (NBR) with polyurethane (PU) and the use of the nanocomposite concept is among the feasible approaches. The present study aims to investigate the effects of nanokaolin (NK) on the tensile and chemical properties of carboxylated nitrile butadiene rubber (NBR)/polyurethane (PU) latex blends. Three different loadings of NK (10, 20, and 30 parts per hundred rubber) were added to the NBR/PU (at a blending ratio of 85/15). The zeta potential showed that all the NBR compounds exhibit good colloidal stability. The incorporation of NK increased the crosslink density and tensile strength of the NBR/PU latex blends. The highest tensile strength was achieved when the NK loading was 20 phr. All the NBR blends and nanocomposites (NBR/PU-based) possess tensile properties that fulfill the requirements for glove application. The chemical resistance of NBR compounds was increased by the incorporation of NK due to the higher crosslink density and barrier properties contributed by the NK. © The Author(s) 2023.

10.
Journal of Child Nutrition and Management ; 46(2), 2022.
Article in English | GIM | ID: covidwho-2264797

ABSTRACT

PURPOSE/OBJECTIVES: The purpose of this study was to identify the ways in which the COVID-19 pandemic affected foodservice operations within urban Kansas childcare centers. METHODS: Three COVID-19-related questions were added to an online survey of Child and Adult Care Food Program (CACFP) participating childcare centers located throughout Kansas. Responses were collected from July through August, 2020. Descriptive statistics and thematic analysis of open-ended responses were used to identify common concerns. RESULTS: Seventy-nine of the 138 childcare centers invited to complete the COVID-19-related questions responded (57.2% participation rate). The majority (n=56, 70.1%) reported decreased enrollment, whereas a small number (n=9, 11.4%) reported an increase. Approximately twothirds of the centers (n=49, 62.0%) reported foodservice operation modifications owing to COVID-19-related challenges. Three overarching themes were discovered within the centers' responses: (a) procurement challenges including decreased availability and increased cost of foods, (b) changes in meal service including shifting to disposable tableware and ceasing familystyle meal service, and (c) menu and production changes in response to enrollment changes and product availability issues. APPLICATION TO CHILD NUTRITION PROFESSIONALS: Future consideration for CACFP participants include shifting to more shelf-stable foods when faced with food availability issues and utilizing more cost-effective food purchasing options, which might be attained through group purchasing organizations. Well-developed emergency plans such as emergency menus should include plans for procurement challenges. Resources and training to increase understanding and knowledge of CACFP meal pattern guidelines may make menu changes based on availability easier or less challenging. Best practice guidelines, such as family-style meals, may have to take health and safety measures into consideration. As centers continue to experience COVID-19-related issues and plan for a "return to normal", child nutrition professionals can fulfill an important role in helping centers adapt their foodservice operations to meet the challenge.

11.
Journal of Hazardous Materials ; 443, 2023.
Article in English | Scopus | ID: covidwho-2246725

ABSTRACT

Abundant disposable surgical masks (SMs) remain in the environment and continue to age under urban environmental stressors. This study aimed to investigate the aging characteristics of SMs and the effect of different aged layers of SMs on phenanthrene (PHE), tylosin (TYL), and sulfamethazine (SMT) under two different urban environmental stressors (UV and ozone). The results show that UV exposure causes more severe aging of the SM layers than ozone. The middle layer, made of melt-brown fabric, has displayed the highest degree of aging due to its smaller diameter and mechanical strength. The two-dimensional correlation spectroscopy (2D-COS) analysis reveals the different aging sequences of functional groups and three layers in aged SMs under the two urban environmental stressors. Whether the SMs are aged or not, the adsorptions of three organic pollutants on SMs are positively correlated with the octanol-water partition coefficient. Furthermore, except for the dominant hydrophobic interaction, aged SMs can promote the adsorption of three organic pollutants by accessory interactions (hydrogen bonding and partition), depending on their structures. These findings highlight the environmental effects of new microplastic (MP) sources and coexisting pollutants under the influence of COVID-19, which is helpful in accurately evaluating the biological toxicity of SMs. © 2022 Elsevier B.V.

12.
Waste Management ; 155:77-86, 2023.
Article in English | Scopus | ID: covidwho-2246649

ABSTRACT

Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%;corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis. © 2022 Elsevier Ltd

13.
Energy ; 263, 2023.
Article in English | Scopus | ID: covidwho-2246180

ABSTRACT

The COVID-19 pandemic has resulted in an alarming accumulation of plastic waste. Herein, an integrated hydropyrolysis and hydrocracking process was performed to upcycle disposable masks into fuel-range iso-alkanes over carbon supported ruthenium (Ru/C). Experimental results indicated that catalyst type significantly affected product distribution during the hydropyrolysis and vapor-phase hydrocracking of disposable masks. Compared with zeolites-induced catalytic cascade process where up to ∼25.9 wt% yield of aromatic hydrocarbons such as toluene and xylenes were generated, a ∼82.7 wt% yield of desirable iso-alkanes with a high C5–C12 gasoline selectivity of 95.5% was obtained over Ru/C under 550 °C hydropyrolysis temperature and 300 °C hydrocracking temperature at 0.2 MPa H2. The cascade hydropyrolysis and hydrocracking process also exhibited high adaptability and flexibility in upcycling single-use syringes, food packaging, and plastic bags, generating 79.1, 81.6, and 80.3 wt% yields of fuel range iso/n-alkanes, respectively. This catalytic cascade hydrotreating process provides an efficient and effective approach to convert pandemic-derived plastic waste into gasoline-range fuel products. © 2022 Elsevier Ltd

14.
Aerosol and Air Quality Research ; 23(1), 2023.
Article in English | Scopus | ID: covidwho-2246160

ABSTRACT

Airborne transmission of respiratory viruses consists of three sequential steps: (1) release of respiratory fluids in the form of droplets from the nose and mouth of an infected person, (2) transport of the droplets through air, and (3) entry of the droplets into the nose and mouth of an uninfected individual. Talking, coughing, and sneezing emit droplets across a spectrum of sizes. The water in exhaled droplets begins to evaporate in air and, as a result, the droplets are reduced in size shortly after being emitted. Face masks are effective for capturing droplets just released from the nose and mouth. Studies indicate that more than 50% of community transmission of SARS-CoV-2 is from asymptomatic and pre-symptomatic cases. Use of face masks by the public can effectively reduce the chance of infected individuals unknowingly spreading the virus. In addition to being an effective device for source control, face masks can protect the wearers from inhaling virus-laden droplets. Cloth masks and disposable masks provide reasonable protection for the public, while surgical masks and N95 respirators give higher levels of protection as needed in healthcare settings. Made with varied materials, these masks have different structural characteristics. The collection efficiency of a face mask depends on droplet size, face velocity, and the structural characteristics of the mask. For a given mask, capturing droplets is more effective during exhalation than during inhalation. Pressure drop across the mask should be taken into consideration when selecting a face mask. The best face mask is the one that gives the highest collection efficiency with the least pressure drop. For an effective protection, a mask should fit the face properly. While face masks have proven adequate in reducing airborne transmission of SARS-CoV-2 infections, continuous improvement is needed to better prepare for future respiratory viral threats. © The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

15.
Journal of Hazardous Materials ; 443, 2023.
Article in English | Scopus | ID: covidwho-2242953

ABSTRACT

This study focuses on characterizing microplastics and non-microplastics released from surgical masks (SMs), N95 masks (N95), KN95 masks (KN95), and children's masks (CMs) after simulating sunlight aging. Based on micro-Raman spectrum analysis, it was found that the dominant particles released from masks were non-microplastics (66.76–98.85%). Unfortunately, CMs released the most microplastics, which is 8.92 times more than SMs. The predominant size range of microplastics was 30–500 µm, and the main polymer types were PP and PET. Compared with the whole SMs, the microplastic particles released from the cutting-SMs increased conspicuously, which is 12.15 times that of the whole SMs. The main components of non-microplastics include β-carotene, microcrystalline cellulose 102, and eight types of minerals. Furthermore, non-microplastics were mainly fibrous and fragmented in appearance, similar to the morphology of microplastics. After 15 days of UVA-aging, the fibers of the face layers had cracks to varying degrees. It was estimated that these four types of masks can release at least 31.5 trillion microplastics annually in China. Overall, this study demonstrated that the masks could release a large quantity of microplastics and non-microplastics to the environment after sunlight aging, deserving urgent attention in the future study. © 2022 Elsevier B.V.

16.
Chemical Engineering Journal ; 451, 2023.
Article in English | Scopus | ID: covidwho-2241923

ABSTRACT

In accordance with global economic prosperity, the frequencies of food delivery and takeout orders have been increasing. The pandemic life, specifically arising from COVID-19, rapidly expanded the food delivery service. Thus, the massive generation of disposable plastic food containers has become significant environmental problems. Establishing a sustainable disposal platform for plastic packaging waste (PPW) of food delivery containers has intrigued particular interest. To comprise this grand challenge, a reliable thermal disposable platform has been suggested in this study. From the pyrolysis process, a heterogeneous plastic mixture of PPW was converted into syngas and value-added hydrocarbons (HCs). PPW collected from five different restaurants consisted of polypropylene (36.9 wt%), polyethylene (10.5 wt%), polyethylene terephthalate (18.1 wt%), polystyrene (13.5 wt%), polyvinyl chloride (4.2 wt%), and other composites (16.8 wt%). Due to these compositional complexities, pyrolysis of PPW led to formations of a variety of benzene derivatives and aliphatic HCs. Adapting multi-stage pyrolysis, the different chemicals were converted into industrial chemicals (benzene, toluene, styrene, etc.). To selectively convert HCs into syngas (H2 and CO), catalytic pyrolysis was adapted using supported Ni catalyst (5 wt% Ni/SiO2). Over Ni catalyst, H2 was produced as a main product due to C[sbnd]H bond scission of HCs. When CO2 was used as a co-reactant, HCs were further transformed to H2 and CO through the chemical reactions of CO2 with gas phase HCs. CO2-assisted catalytic pyrolysis also retarded catalyst deactivation inhibiting coke deposition on Ni catalyst. © 2022 Elsevier B.V.

17.
Journal of Hazardous Materials ; 441, 2023.
Article in English | Scopus | ID: covidwho-2239696

ABSTRACT

This study explored the degradation behavior of three types of disposable face masks in simulated seawater via the accelerated aging experiments. Microplastics (MPs) and dissolved organic carbon (DOC) were monitored in UV- and thermal-treated mask suspensions and their concentrations increased slowly in the early stage at 50 ℃ and 58 ℃. Owing to the high energy supply, the release rates of MPs and DOC at 76 ℃ were much faster than the above two temperatures. The time-temperature superposition principle (TTSP) was used to superpose the MPs/DOC release kinetics from other tested temperatures to the reference temperature and its applicability was verified by the similar activation energy. Then, a release kinetics model was established and fitted well with the superposed MP data (R2 ≥ 0.96). Since less than 0.1 % of carbon was leached, the superposed DOC data was roughly modelled by the exponential function (R2 ≥ 0.90). According to the TTSP and the established kinetics models, about 15 years were estimated to decompose half of a certain marine mask waste, together with leaching 0.21 ± 0.02 mg∙g-mask−1 of DOC. If mask consumption remains the same before 2025, they would contribute 40000–230000 tonnes of MPs and 13–97 tonnes of DOC to the ocean by 2040. © 2022

18.
Frontiers in Optics, FiO 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2233915

ABSTRACT

We propose a rapid serologic test based on disposable nano-photonic biochips for SARS-CoV-2 related antibodies. The label-free sensograms showed that positive and negative human serum samples were discriminated, enabling real-time and fast label-free detection. © 2022 The Author (s)

19.
Frontiers in Optics, FiO 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2218880

ABSTRACT

We propose a rapid serologic test based on disposable nano-photonic biochips for SARS-CoV-2 related antibodies. The label-free sensograms showed that positive and negative human serum samples were discriminated, enabling real-time and fast label-free detection. © 2022 The Author (s)

20.
Aerosol and Air Quality Research ; 23(1), 2023.
Article in English | Scopus | ID: covidwho-2202188

ABSTRACT

Airborne transmission of respiratory viruses consists of three sequential steps: (1) release of respiratory fluids in the form of droplets from the nose and mouth of an infected person, (2) transport of the droplets through air, and (3) entry of the droplets into the nose and mouth of an uninfected individual. Talking, coughing, and sneezing emit droplets across a spectrum of sizes. The water in exhaled droplets begins to evaporate in air and, as a result, the droplets are reduced in size shortly after being emitted. Face masks are effective for capturing droplets just released from the nose and mouth. Studies indicate that more than 50% of community transmission of SARS-CoV-2 is from asymptomatic and pre-symptomatic cases. Use of face masks by the public can effectively reduce the chance of infected individuals unknowingly spreading the virus. In addition to being an effective device for source control, face masks can protect the wearers from inhaling virus-laden droplets. Cloth masks and disposable masks provide reasonable protection for the public, while surgical masks and N95 respirators give higher levels of protection as needed in healthcare settings. Made with varied materials, these masks have different structural characteristics. The collection efficiency of a face mask depends on droplet size, face velocity, and the structural characteristics of the mask. For a given mask, capturing droplets is more effective during exhalation than during inhalation. Pressure drop across the mask should be taken into consideration when selecting a face mask. The best face mask is the one that gives the highest collection efficiency with the least pressure drop. For an effective protection, a mask should fit the face properly. While face masks have proven adequate in reducing airborne transmission of SARS-CoV-2 infections, continuous improvement is needed to better prepare for future respiratory viral threats. © The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

SELECTION OF CITATIONS
SEARCH DETAIL